Disclosure

- I do not have any financial interest or affiliation with any organization that would influence the content of this presentation
Objectives

- Understand current trends in *Neisseria gonorrhoeae* antimicrobial susceptibilities

- Comprehend public health and clinical implications of gonococcal cephalosporin susceptibility trends
Overview

- Gonorrhea
- Resistance and treatment
- Surveillance of gonococcal resistance
- Emerging threat of cephalosporin resistance
- Conclusions
Gonorrhea

- One of the oldest known human diseases
 - Named by Galen (2nd century) ~ “flow of semen”

- Caused by *Neisseria gonorrhoeae*

- 2nd most commonly reported notifiable infection

- Can be asymptomatic

- Can cause
 - Pelvic inflammatory disease (PID)
 - Ectopic pregnancy
 - Infertility

- May facilitate HIV transmission
Gonorrhea Rates, United States, 1941–2011

Rate (100,000 population)
Neisseria gonorrhoeae (NG) Treatment

- Prompt antimicrobial treatment limits sequelae, prevents transmission
 - Detection & treatment is cornerstone of NG control

- Antimicrobial resistance
 - Undermines treatment success
 - Heightens risk of complications
 - Facilitates transmission (*by lengthening infectious period*)
Treatment of Gonorrhea in the Pre-Antimicrobial Era

- Patent Medicines
- Intraurethral irrigation
 - Mercurochrome
 - Nitric acid
 - Silver nitrate
- Mechanical removal of strictures
 - Sounds
 - Dilators

Baumann F. Gonorrhea: Its Diagnosis and Treatment. D. Appleton & Co. 1910
Antimicrobial Treatment of Gonorrhea

- **1930s**
 - **Sulfonamide therapy introduced**
 - Prontosil found to be effective
 - *N. gonorrhoeae* rapidly developed resistance within several years (~30% resistance)
Antimicrobial Treatment of Gonorrhea

1930s
- Sulfonamide therapy introduced

1940s
- Penicillin proved effective
 - Becomes treatment of choice
Antimicrobial Treatment of Gonorrhea

- **1930s**
 - Sulfonamide therapy introduced

- **1940s**
 - Penicillin proved effective

- **1970s**
 - Incremental penicillin resistance
 - Penicillin dosage increased
 - Probenecid added to extend half-life
Antimicrobial Treatment of Gonorrhea

- **1930s**: Sulfonamide therapy introduced
- **1940s**: Penicillin proved effective
- **1970s**: Incremental penicillin resistance
- **1980s**: High-level penicillin resistance (penicillinase-producing NG [PPNG])
 - Emerged in SE Asia and West Africa
 - Spread globally
Treatment Options after Emergence of PPNG

- **Spectinomycin**
 - No longer available in US

1980s—new antimicrobials became available

- **Fluoroquinolones**
 - Ciprofloxacin
 - Levofloxacin

- **Third-generation cephalosporins**
 - Ceftriaxone (injectable)
 - Cefixime (oral)
The Gonococcal Isolate Surveillance Project (GISP)

- CDC-supported US sentinel surveillance since 1987
- Monitors trends in *N. gonorrhoeae* susceptibility to antimicrobials

Methods

- Urethral isolates obtained from first 25 men per clinical site each month
- Susceptibility testing conducted by regional laboratories
 - Minimum inhibitory concentrations (MICs) by agar dilution
- Confirmatory testing by CDC
- Limited demographic & clinical data
Gonococcal Isolate Surveillance Project — United States, 2012

Source: Gonococcal Isolate Surveillance Project
Measuring Antimicrobial Susceptibility

- **Agar dilution**
 - Grow bacteria on plates with varying antimicrobial concentrations
 - Requires culture
 - Gold standard but labor-intensive (done at reference laboratories)
 - Provides minimum inhibitory concentration (MIC) – lowest antimicrobial concentration that inhibits bacterial growth in lab
 - Low MICs ~ susceptible
 - High MICs ~ resistant

- **Disc diffusion (Kirby-Bauer)**

- **Etest**
Measuring Antimicrobial Susceptibility

- **Agar dilution**
 - Gold standard
 - Labor-intensive
 - Done at reference laboratories
 - Provides minimum inhibitory concentration (MIC) – lowest antimicrobial concentration that inhibits bacterial growth in lab

- **Disc diffusion (Kirby-Bauer)**

- **Etest**
Disc Diffusion (Kirby-Bauer)

Dead bacteria

Live bacteria
Disc Diffusion (Kirby-Bauer)

Results as diameter (in millimeters)

Dead bacteria

Live bacteria
Measuring Antimicrobial Susceptibility

- **Agar dilution**
 - Gold standard
 - Labor-intensive
 - Done at reference laboratories
 - Provides minimum inhibitory concentration (MIC) – lowest antimicrobial concentration that inhibits bacterial growth in lab

- **Disc diffusion (Kirby-Bauer)**

- **Étest**
 - Provides MIC

bioMérieux Clinical Diagnostics

Dead bacteria

Live bacteria
CDC STD Treatment Guidelines, 2002

- Cefixime 400 mg *(oral, single dose)*
- Ceftriaxone 125 mg *(injectable, single dose)*
- Ciprofloxacin 500 mg *(oral, single dose)*
- Ofloxacin 400 mg *(oral, single dose)*
- Levofloxacin 250 mg *(oral, single dose)*

If chlamydia is not ruled out:
- Azithromycin 1 g or
- Doxycycline 100 mg BID x 1 week

GISP, Gonococcal Isolate Surveillance Project, 1990–2007
Resistant isolates have ciprofloxacin MICs ≥1 µg/ml
Ciprofloxacin Resistance in *N. gonorrhoeae*, by Gender of Sex Partner, United States, 1999-2007

GISP, Gonococcal Isolate Surveillance Project, 1990–2007
Resistant isolates have ciprofloxacin MICs ≥1 µg/ml
MSM, men who have sex with men
MSW, men who have sex exclusively with women
CDC STD Treatment Guidelines, 2007

- Cefixime 400 mg po
- Ceftriaxone 125 mg IM
- Ciprofloxacin 500 mg po
- Ofloxacin 400 mg po
- Levofloxacin 250 mg po

& If CT is not ruled out
 - Azithro 1 g or
 - Doxycycline 100 mg BID x 1 week

Cephalosporins are only remaining class
Global Emergence of Resistance to Cephalosporins

- First reported oral cephalosporin treatment failure – Japan (2001)
- Additional treatment failures with oral cephalosporins (east Asia)
- Increasing cephalosporin MICs – *early warning for potential resistance*
 - Japan
 - China
 - Australia
Increasing oral cephalosporin MICs (late 2000s)
- Europe
- Canada

2009 – 1st high-level ceftriaxone resistant isolate (H041) from pharynx of CSW (Japan)
- Cured, H041 has not since been detected

Ceftriaxone-resistant isolates found in MSM in France, Spain
- All were cured

Treatment failures with cefixime among MSM identified in Toronto
Proportion of GISP Isolates with Elevated Cefixime MICs (≥0.25 μg/ml), United States, 2000–2011

Source: Gonococcal Isolate Surveillance Project
Proportion of GISP isolates with Elevated Cefixime MICs (≥0.25 μg/ml) by Region, 2006–2011

Source: Gonococcal Isolate Surveillance Project
Proportion of GISP isolates with Elevated Cefixime MICs (≥0.25 μg/ml) by Gender of Sex Partner, US, 2006–2011

* Preliminary (Jan-June)
MSM = Men who have sex with men; MSW = Men who have sex exclusively with women

Source: Gonococcal Isolate Surveillance Project
Other Resistance in Isolates with Elevated Cefixime MICs, 2011–2012*

* Preliminary Jan-June
PenR=penicillin-resistant; QRNG = quinolone-resistant; TetR = tetracycline-resistant

Source: Gonococcal Isolate Surveillance Project
The chart shows the percentage of isolates with elevated ceftriaxone MICs (≥0.125 µg/ml) from 2008 to 2011.

- **2008**: Preliminary (Jan-June)
- **2009**: 0.2%
- **2010**: 0.4%
- **2011**: 0.8%

Source: Gonococcal Isolate Surveillance Project
Proportion of Isolates with Elevated Cefixime MICs ($\geq 0.25 \mu g/ml$), Chicago, 2006–2012*

Cefixime AST not conducted

* Preliminary (Jan-June)

Source: Gonococcal Isolate Surveillance Project
Proportion of Isolates with Elevated Cefixime MICs (≥0.25 μg/ml) by Sex of Sex Partner, Chicago, 2006–2012*

- **MSM** = Men who have sex with men; **MSW** = Men who have sex exclusively with women

* Preliminary (Jan-June)

Source: Gonococcal Isolate Surveillance Project

- MSM n=56
- MSW n=240
- MSM n=56
- MSW n=179
- MSM n=53
- MSW n=71
- MSM n=58
- MSW n=198
- MSM n=39
- MSW n=97
Updated GC Treatment Guidelines, 2012

- **Recommended**
 - Ceftriaxone 250 mg IM **PLUS**
 - Azithro 1 g or Doxycycline

- **Alternatives**
 - Cefixime 400 mg **PLUS** Azithro/Doxy **OR**
 - Azithromycin 2 g

- **PLUS**
 - Test of cure
New Systemic Antibacterial Agents Approved by the FDA, 1983–2007

Number of New Antimicrobial Agents Approved

1983-1987: 16
1988-1992: 14
1993-1997: 10
1998-2002: 6
2003-2007: 4

Source: Gonococcal Isolate Surveillance Project (GISP)
Gonococcus Antimicrobial Susceptibility Testing

Dicker et al. STD 2004;31(5):259-264
Dicker et al. STD 2007; 34(1):41-46
Azithromycin Susceptibility

- In 2011, 0.3% isolates had elevated azithromycin MICs (≥2.0 µg/ml)
 - No clear temporal trends
- Macrolide resistance can emerge rapidly
- Have seen small number with reduced susceptibility/resistance in the US
 - San Diego: cluster of isolates from MSM with MICs 8–16
 - Hawaii: highly azithromycin-resistant infection (MIC > 512)
 - Portland: treatment failure after 2 g monotherapy (MICs 1, 8)

CDC. MMWR 2011
Katz AR et al. CID 2012
Soe O et al STD 2012
Yet, some recent cause for optimism
Recent developments

- No reported treatment failures yet in US
- Strains with elevated cephalosporin MICs do not appear to be more virulent or transmissible
- Heightened awareness
 - Media coverage (2011–present)
 - High level of awareness by public health STD programs
 - Increasing interest by drug developers
- GAIN Act (2012)
 - *N. gonorrhoeae* might be qualifying pathogen
GC Dual Therapy Clinical Trial for Salvage Therapy
(NCT00926796)

- NIAID/NIH and CDC collaboration
- Investigating efficacy of 2 combinations for treatment of uncomplicated urogenital gonorrhea
 - Gentamicin 240 mg IM and Azithromycin 2 g po
 - Gemifloxacin 320 mg po and Azithromycin 2 g po

- Four clinical sites
 - San Francisco, CA
 - Birmingham, AL
 - Pittsburgh, PA
 - Los Angeles, CA

- Enrollment completed; data being analyzed
Proportion of GISP isolates with Elevated Cefixime MICs (≥0.25 μg/ml), 2006–2012*

* Preliminary (Jan-June)

Source: Gonococcal Isolate Surveillance Project
Where do we go from here? (Short-term)

- **Surveillance**
 - GISP
 - Local GC detection & reporting
 - Enhanced local surveillance for GC AMR?
 - Clinician vigilance & reporting

- **Ability of labs to culture for GC**

- **Program preparedness and response**

- **Basic gonorrhea control**

- **Ensure appropriate clinical management**
Where do we go from here? (Longer-term)

- New antimicrobials or combinations
- New diagnostic approaches
 - Molecular detection of resistance determinants?
 - POC tests?
- Exploration of genome sequencing
- Vaccine?
Conclusions

- Emerging threat of cephalosporin-resistance *N. gonorrhoeae*
- Ceph RNG would severely complicate treatment
- Spread of resistance might be slowed by
 - Aggressive treatment
 - Prompt programmatic response
 - Driving down GC morbidity
- Local efforts are critical
- Preparedness now can enhance response later
- New treatment options urgently needed
Acknowledgements

CDC
- Hillard Weinstock
- Sarah Kidd
- John Papp
- David Trees
- Alesia Harvey
- Gail Bolan
- Kevin Pettus
- Samera Bowers
- Steve Shapiro

GISP Clinical Sites
- Englewood and Lakeview clinics

GISP PIs
- Ned Hook
- Olusegun (S.O.) Soge
- King Holmes
- Carlos del Rio
- Susan Harrington
- Susan Tanksley & Grace Kubin
Resources

www.cdc.gov/std

- CDC Cephalosporin-Resistant *Neisseria gonorrhoeae* Public Health Response Plan
- Updated gonorrhea treatment guidelines (MMWR, 2012)
- STD Surveillance Report, 2011 (contains aggregate GISP data)
- GISP home page (www.cdc.gov/std/gisp)
 - Annual site-specific profiles
For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333
Telephone: 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348
E-mail: cdcinfo@cdc.gov Web: http://www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.
Percentage of Isolates with Elevated MICs or Resistance by Sex of Sex Partner, 2005–2010

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>MSM n=8,117</th>
<th>MSW n=26,483</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftriaxone*</td>
<td>0.4</td>
<td>0.1</td>
<td><0.01</td>
</tr>
<tr>
<td>Cefixime**</td>
<td>1.7</td>
<td>0.2</td>
<td><0.01</td>
</tr>
<tr>
<td>Azithromycin†</td>
<td>0.9</td>
<td>0.2</td>
<td><0.01</td>
</tr>
<tr>
<td>Tetracycline†</td>
<td>37.5</td>
<td>13.3</td>
<td><0.01</td>
</tr>
</tbody>
</table>

* $\geq 0.125 \, \mu g/ml$

** $\geq 0.25 \, \mu g/ml$

† $\geq 2.0 \, \mu g/ml$

Kirkcaldy RD et al. Annals Internal Medicine 2013