

Screening for Tuberculosis Infection: Making the Most of Imperfect Tests

Kathy Ritger, MD, MPH
Medical Director, CDPH TB Control Program
June 8, 2015

Disclosure

No disclosures or conflicts of interest

Objectives

- Review features of the main tests for the diagnosis of latent TB infection and TB disease
- List pro's and con's of each test
- Describe when to report suspected TB cases to public health

TB Diagnosis – Ideal State

Tests would be

- Sensitive
- Specific
- Rapid

TB Diagnosis – Reality

- Screening tests lack sensitivity
- TB is less common-clinicians need to think TB
- Culture takes weeks

Mycobacterial Burden

Incubating Latent Old, Inactive Active

Number of Organisms (log scale)

Latent Infection vs. TB Disease

Latent TB Infection (LTBI)	TB Disease (in the lungs)
Inactive, tubercle bacilli contained	Active, tubercle bacilli multiplying
TST or blood test results usually positive	TST or blood test results usually positive
Chest x-ray usually normal	Chest x-ray usually abnormal
Sputum smears and cultures negative	Sputum smears and cultures may be positive
No symptoms	Symptoms such as cough, fever, weight loss
Not infectious	Often infectious before treatment
Not a case of TB	A case of TB

Tuberculin Skin Test (TST)

Requires proper placement

 Inject 0.1ml of PPD intradermally in forearm

Requires proper reading

- Read 48-72hrs post-placement
- Read induration, not erythema
- Read diameter across forearm
- Record results in millimeters

Interferon Gamma Release Assays (IGRAs)

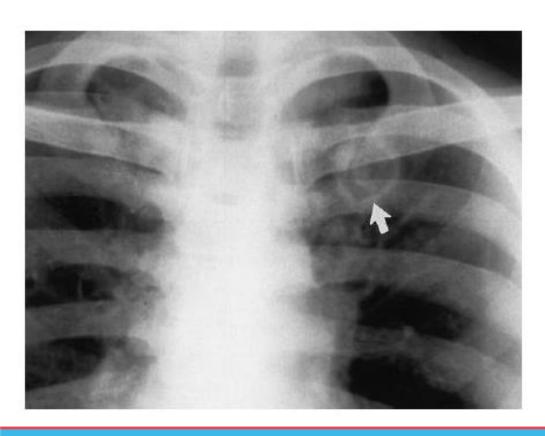
- Blood tests that indirectly detect M. tb complex infection
- Expose T cells to 2 or 3 TB antigens. If the T cells were previously sensitized to these antigens they will release interferon-gamma
- These antigens are absent from most non-TB mycobacteria
 - Exceptions: M. kansasii, M. marinum, M. szulgai
- Two FDA approved IGRAs commercially available in U.S.
 - QuantiFERON-TB Gold In-Tube
 - T-SPOT.TB
- PRO's: not affected by BCG vaccination, requires one visit
- <u>CON's</u>: increased cost compared to TST, reproducibility?

QuantiFERON-Gold In-Tube (QFT)

Collection and processing considerations

- Draw blood into 3 proprietary 1 ml tubes
- Do not overfill; shake 10 times
- Get tubes at 37°C as soon as possible and w/in 16hrs
- Incubate upright for 16-24hrs
- Centrifuge and carefully remove ≥150 µl plasma to assay

QuantiFERON-Gold In-Tube (QFT)

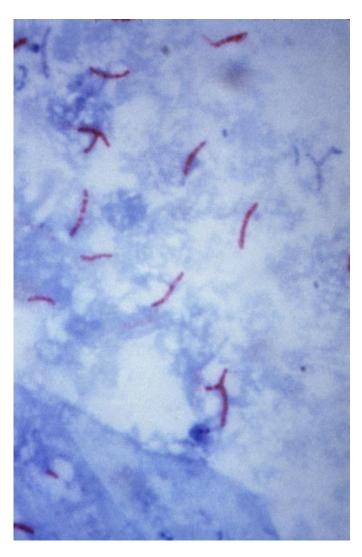

- Nil tube: no additives, used to determine if the patient has a background immune response that could result in a false +. In order for a test to be valid, the nil tube must have a value ≤8.0 IU/ml.
- Mitogen tube: contains a non-specific stimulator of T cells, serves as the positive control. In order for test to be valid, the mitogen tube must have a value ≥0.5 IU/ml higher than the value of the nil.
- TB antigen tube: assay tube. For a test to be considered positive, the antigen tube value minus the value of the nil tube must be ≥0.35 IU/ml

QuantiFERON-Gold In-Tube (QFT)

- Test cut-off designed to maximize sensitivity in comparison to culture-positive patients and specificity to people unlikely to have disease
- But no gold-standard for LTBI
- Among individuals with values just above or just below the cut-off threshold, conversions and reversions were common
- Confirming a positive QFT in a low-risk individual may be prudent before starting LTBI therapy
- "Indeterminate" result not equal to "intermediate"

Chest Imaging

- Primary TB infection: infiltrates, hard to distinguish from CAP
- Reactivation TB: apical cavity (left) is classic finding
- Miliary pattern (right) indicates hematogenous spread



Mycobacteriologic Examination

- Proper specimen collection
 - Collect at least 3 sputum specimens at 8-24 hr intervals, at least one should be collected early morning
 - Coughing, induction, bronchoscopy, gastric aspirates
 - Follow infection control precautions during collection
- Acid-fast bacilli (AFB) smear
- Direct identification by nucleic amplification test
- Specimen culturing and identification
- Drug susceptibility
- Genotyping

Acid-Fast Bacilli (AFB) Smear

- Microscopic exam
- Need at least 10,000 AFB/ml to be positive
- Results in 24 hrs
- Positive result supports diagnosis of TB disease; however does not distinguish between viable and dead organisms
- Does not distinguish between MTB and non-tuberculosis mycobacteria

Nucleic Acid Amplification Test (NAAT)

- Performed directly on pulmonary specimen: sputum, bronch, tracheal
- Should be done on a respiratory specimen from each patient with signs and symptoms of active pulmonary TB for whom a diagnosis of TB is being considered
- <u>PRO's</u>: earlier diagnosis leads to earlier treatment and reduced period of infectiousness, earlier infection control decisions, earlier public health interventions
- <u>CON's</u>: does not replace AFB culture, adds lab cost, is labor intensive, susceptible to contamination

AFB Culture and Identification

- More sensitive than smear: need only 10 AFB/ml for a positive result
- Results as soon as 4-14 days if liquid media used
- Incubate at least 6 wks to confirm no growth
- Once there is growth many labs can do DNA probe identification (not amplified)
- Also, biochemical identification

Xpert MTB/RIF Assay

- Is a nucleic acid amplification (NAA) test that uses a disposable cartridge with the GeneXpert Instrument System
- Detects M. tuberculosis complex and rifampin resistance
- Sputum from a suspect TB patient is mixed with a reagent and a cartridge containing this mixture is inserted in the machine
- PRO's: Results available in a few <u>hours</u>, minimal technical training needed
- <u>CON</u>: cost

Case #1

- 61 yr old woman, born in Philippines, in U.S. since 1995
- Cough x 1-2 weeks, dyspnea, 5 lb wt loss, fatigue
- CXR/chest CT: cavitary lesions
- Sputum AFB smear 4+, AFB culture pending
- What test will help you most at this juncture?
 - > TST
 - > IGRA
 - ➤ NAA test on sputum
 - Bronchoscopy with AFB smear and culture

Case #1 – cont.

- The NAA test is performed <u>directly on the sputum</u> sample and detects *M. tuberculosis* complex RNA
 - ➤ Positive result → highly suspicious for TB disease (although still not confirmatory)
 - ➤ Negative result → doesn't rule out TB disease
- TST and IGRA won't help advance the diagnostic process
- Bronchoscopy only if for some other pulmonary indication
- This patient was NAA+ and was started on 4-drug TB therapy*
 - * Report case to public health

Case #2

- 69 yr old woman, HIV-, born in Mexico, in U.S. since 1979
- Mild cough and dyspnea x 1 week
- CXR: patchy infiltrates, perihilar lymphadenopathy
- Rx with levofloxacin for CAP
- One month later develops neck mass
- TST = 32mm, QFT = positive (test placed/collected same day)
- 4-drug TB treatment started* upon TST+ and QFT+
- What tests are indicated next?

Case #2—cont.

- What tests are indicated next?
 - Chest CT
 - Biopsy of neck mass for AFB smear and culture
 - Ultrasound of neck mass
 - Sputum for AFB smear and culture
 - Urine for AFB smear and culture

Case #2—cont.

- Chest CT
- ✓ Biopsy of neck mass for AFB smear and culture
- Ultrasound of neck mass
- ✓ Sputum for AFB smear and culture
- Urine for AFB smear and culture

- Chest CT and neck U/S won't help advance the diagnostic process
- Urine for AFB smear/culture only if GU symptoms
- This patient was AFB smear negative on lymph node and sputum specimens but grew M. tuberculosis from both sites

Case #3

- 49 yr old man, HIV+, born in Mexico, in U.S. since 2004
- Cough, diarrhea w/ melena, weakness, 35lb wt loss over 3 mos.
- Not on HIV meds, CD4 = 2; has diabetes and cirrhosis
- Treated for culture-negative pericardial TB in 2009

Case #3 – cont.

- Duodenal biopsy: AFB seen on the stain but not sent for culture
- CXR normal
- Chest CT mild abnl but no cavity, no miliary
- Sputum smear negative
- Therapy for TB and Mycobacterium avium started*
- Should you order a NAAT on the sputum specimen?
- Should you order a TST or IGRA?

Case #3 – cont.

- NAAT would be helpful if positive
- TST or IGRA: positive result would tell you the patient is infected, but negative result doesn't help b/c of immunocompromised state

- This patient's sputum grew an AFB which was eventually identified as Mycobacterium avium complex (MAI or MAC)
- TB meds stopped
- No TST, IGRA, or NAAT performed

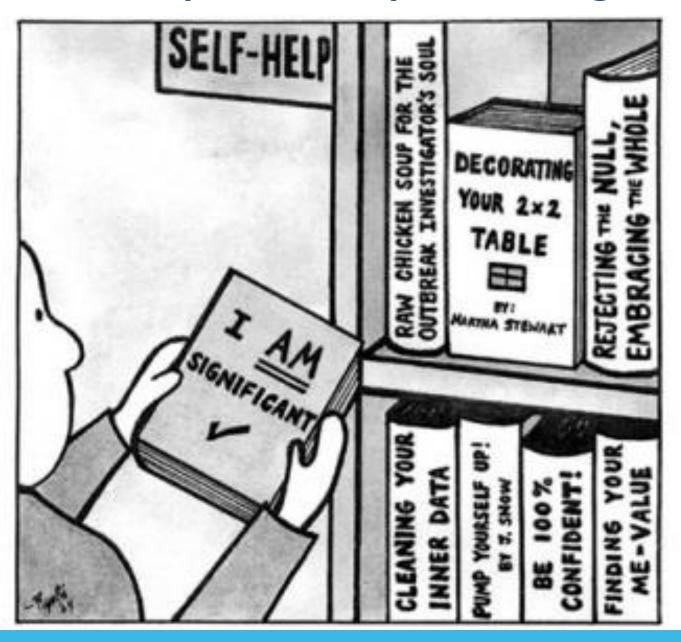
Case #4

- 25 yr old man, HIV-, born in Guatemala, in U.S. since 2012
- Neck swelling x 1 month; otherwise healthy
- Immigration physical: pt reports TST+, CXR had a "shadow", no diagnosis of LTBI or TB given
- CXR nl; chest CT multiple nodules upper lobes, no cavity
- TST = 40mm
- Lymph node biopsy: necrotic granulomas, AFB smear positive
- 4-drug TB therapy started*
- Should this patient be in airborne isolation?
 - * Report case to public health

Case #4 – cont.

- Should this patient be in airborne isolation? YES
- How to know when to release from All room?
 - ☐ Sputum smear negative x 3
 - Xpert MTB/RIF negative result x 1
 - ☐ Consider at least 5 days of effective TB therapy

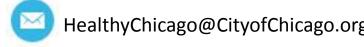
• This patient had 3 sputa specimens collected—all were AFB smear negative. One specimen grew an AFB, later identified as *M. kansasii*.


Conclusions

- Diagnosing TB typically requires multiple tests, interpreted in the clinical context
 - Good communication with your labs
 - > Try to build in reflex testing algorithms
 - Consult public health for help
- Collect specimens from as many sites as indicated to increase yield
- Even suspect TB cases are reportable to public health
 - If patient starts TB medications, report

CDPH TB Control Program—Key Points of Contact

- To report cases
 - Juan Elias (Senior Comm Dis Investigator): 312-746-6013
 - Nereida Bruno-Otero (Senior Nurse Case Manager): 312-746-6036
- Clinical consultation
 - Dr. Kathy Ritger: 312-746-5992
- General program information
 - Nancy Rivera (Program Director): 312-746-5987


Self-Help for the Epidemiologist

