I have no actual or potential conflict of interest in regards to this presentation.
UN meeting:
Sept 26, 2018

2018 –
Big year for TB

THE TUBERCULOSIS REPORT
FOR HEADS OF STATE AND GOVERNMENTS

GLOBAL PLAN TO END TB 2016 - 2020
First WHO Global Ministerial Conference
Ending TB in the Sustainable Development Era: A Multisectoral Response
Moscow, Russian Federation, 16-17 November 2017

MOSCOW DECLARATION TO END TB

Preamble:

74 ministers from 125 countries
FIRS: professional societies role

We, the Ministers of Health and from across Governments acknowledge that despite concerted efforts, tuberculosis (TB), including its drug-resistant forms, causes more deaths than any other infectious disease worldwide and is a serious threat to global health security.

TB kills more than five thousand children, women and men each day and leaves no country untouched. It is one of the leading killers among people of working age which creates and reinforces a cycle of ill-health and poverty, with potential catastrophic social and economic consequences for families, communities, and countries. While recognizing the higher prevalence of TB among men, women and children are also vulnerable to the consequences of TB due to gender-
Why TB?

TB is a disease that should not exist!
It’s curable.
It’s preventable.
It’s contagious.
World TB

• Most fatal infectious disease in the world!
• 10.4 M new cases
• 1.8 M deaths
• Resistant TB
 – 600,000 rifampin
 – 490,000 MDRTB (HR)
 – 9% of MDRTB → XDRTB (FQL & injectable)
 – WHO Global Tuberculosis Report 2017
World TB

• TB cure rate
 – Drug sensitive – 83%
 – MDR – 52%
 – (2017: new regimens ~75%)
 – XDR – 28%
World TB trends

WHO Global Tuberculosis Report 2017
$$\textbf{USA TB}$$

- 2016: 9287 new cases (lowest ever)
 - 2.7% decreased from 2015
- 2016: incidence 2.9×10^{-5}
- 2015: 1.3% MDR (94 cases)
 - 1953: 84,304 cases, 19,707 deaths; 52.6×10^{-5}
Illinois TB

Nearly constant in this decade
Epidemiology
TB Epidemiology

• 10% of TB occurs in children
 » WHO TB Report 2017

• Smoking doubles risk
 » Bates, et al., Arch Intern med 2007;167:335-42

• Death rates ↓ >100 fold 1900-1980

• China: halved its prevalence, reduced mortality by 80% from 1990-2010
 » Wang et al., Lancet 2015;383:2057-64
TB Epidemiology

• Average duration of infectiousness 1 year (based on incidence to prevalent ratio)
 » Onozaki et al., Trop med Int Health 2015;20:1128-45

• 50% have no prolonged cough

• 25% have no symptoms at all
 » Hoa et al., Bull WHO 2010;88:273-80

• Latent ↔ active subtle
 – Transmissible
 » Dowdy et al., J Respir Crit Care Med 2013;187:545-551
Latent tuberculosis
Latent basics

• Definition: immune response
 – No symptoms or signs
 – Persistent bacilli
 – Adenopathy, capping, granuloma

• “LTBI” misleading
 – “Infection” ≠ lack of disease

• ¼ world (2 B) infected
All latent TB is not a like

- Healthy long-term reactor
- Recent converter
- Reactor with risk factors
- Person going into and out of active disease
Dormancy basics

• Persisters ≡ bacilli surviving with known effective drugs
 – Noncultureable (ordinary lab conditions)

• Dormancy ≡ bacterial state dependent on its environment
 – Predominant bacilli in latent TB
Dormancy

• Stress → metabolic shift
 – 10X increase in glyoxylic acid cycle

• dosR → regulates into dormancy
 » Mayuri et al., FEMS Microbiol Lett 2002;211:231-7

• Resuscitation-promoting factors
 – Phospholipids
 – Quorum sensing
Treatment of latent TB
Decision to Rx

• Risk-benefit considerations 50 years old
• Risk of TB vs. toxicity of INH for 12 mo
• Did not consider
 – Long-term protection
 – Careful follow-up (less chance of serious SA)
 – Shorter regimens
 – Patient time, worry
 – Public health
Treating latent $\rightarrow \downarrow$ prevalence

- Treat before spread \rightarrow cost effective
Syphilis

• Latent phase has similarities to TB
• Of 50 pts – only 19% progressed
 » Eng et al., Bull WHO Org 1963;28:533-5
• 10% cardiac, 6.5% neuro, 16% late benign
 » Clark and Danbolt. J Chronic Dis 1955;2:311-44

• All would treat–risk-benefit (penicillin)
Currently recommended

- Isoniazid 9 months
- Rifampin 4 months
- Rifapentine + isoniazid weekly for 12 doses
- Not recommended RZ 2 mo (toxicity)
 - Therapy for active 2 months - adequate
Isoniazid

- Success
 - Must await awakening to kill → long duration

- Long duration
 - Associated with toxicity, cost, treatment failure
 - Cost → HCW & patient’s time
 - Dropout ∝ treatment duration
 - Many studies
Why not kill dormant?

- Pyrazinamide, quinolones, injectables, rifamycins, linezolid, clofazimine, bedaquiline, delamanid are active against dormant bacilli
- Isoniazid and ethambutol are not
 - Piccaro et al., Antimicro Agent Chemo 2013;57:1428-1433
Regimens against dormant

- Rifamycins
 - Kill dormant bacilli
 - Should shorten regimens
- Daily rifampin 3-4 months effective
- Rifapentine & INH - 12 doses weekly dose
 - As effective as 9-month daily isoniazid
 - Less toxicity (0.5%)
 - Higher completion rate (82% vs. 69%)
Treatment summary

• Shorter and safer regimens
 – Treat all with latent TB
• Treating latent \rightarrow TB elimination
• Treating helps patient and society
What is not in the conclusion

• Mass screening → not cost effective
 – High false positives in low burden settings
 » ATS. Am J Respir Crit Care Med 2000;161:S221-47

• Nontargeted mass Rx → less effective
 – Without regard for infection
 – S. Africa: High reinfection

• PPD negative → no benefit

• Infrastructure needed to ensure success
 – Well-functioning clinic, education, access, follow-up
Drug resistance
MDRTB map

Diagnosis and notification of multidrug-resistant TB

Notified MDR-TB cases (number per 100 000 population), 2014

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

Copyright - WHO 2017. All rights reserved.
Resistance types

- Genotypic (DNA tests)
 - Resistance genes known for most drugs
- Phenotypic (culture-based)
 - Epigenetic or protein modifications
 - E.g. treatment stress induces efflux pumps
Culture vs. genetic resistance

- Genotype may vary with culture
- Culture: slow, biohazardous, requires lab infrastructure and training and may soon be more expensive
 - E.g. pyrazinamide
- Future will be gene based
10 commandments of TB Rx

1. Never add a single drug to a failing regimen.
2. Never add a single drug to a failing regimen.
3. Never add a single drug to a failing regimen.
4. Never add a single drug to a failing regimen.
5. Never add a single drug to a failing regimen.
6. Never add a single drug to a failing regimen.
7. Never add a single drug to a failing regimen.
8. Never add a single drug to a failing regimen.
9. Never add a single drug to a failing regimen.
10. Never add a single drug to a failing regimen.
Isoniazid monoresistance
Isoniazid

- Prodrug activated by catalase-peroxidase
 - Only affects active organisms
- 9% of world isolates resistant
 - WHO Global Tuberculosis Report 2014
- Mutations
 - **katG** (50-95%)(high, MIC 0.2-5 µg/mL)(lose virulence?)
 - **inhA** (8-43%)(low, MIC=0.1-0.2 µg/mL)
- Others
 - **katG** promoter, **inhA** promoter, **fabG1**, **embB**, **kasA**, **ahpC (+ promoter)**, **oxyR**, **iniA**, **iniB**, **iniC**, **ndh**
Monoresistance isoniazid

- BMRC trials (aggregate) small effect vs. RMP
- INH resist vs. pansensitive \rightarrow↑ failure (10.9) and relapse (1.8)
 » Menzies et al., PLOS Med 2009;6:e1000146
- katG mixed (or worse) outcome than inhA
 » Stagg et al., Int J Tuberc Lung Dis 2017;21:129-39
- Replacing INH with FLQ – no difference
Monoresistance isoniazid treatment

- WHO
 - No DST: High background: HRZE$_2$RZE$_4$
 - DST available: RZE±F$_6$-9
 http://www.who.int/tb/publications/pmdt_companionhandbook/en/

- $R_pZEM_4 + R_pM_2 = $ standard RHZE

- For me: $R_pF±ZE_6$-9
High-dose isoniazid

- High-dose $\equiv 16-20$ mg/kg/d
- \uparrow success (Rx-failure, relapse, death combined)
- Not for \textit{katG} mutations
Resistance other drugs
Rifamyicins
Rifamycins

- Rifampin, rifapentine, rifabutin
- Similar sensitivity spectrum (5-20% difference)
 » Jamieson et al., J Clin Microbiol 2014;52:2157-62
- Different safety profile: Side effects to one, can switch
- Low blood levels
 - Fewer pts reach C_{max} for RMP compared with other drugs
 - ↓RMP pts sicker (↑APACHE)
 » Koegelenberg et al., S. Afr Med J 2013;103:394-8
- Autoinducer →↓levels after starting
- High dose RMP >10 mg/kg or >600 mg/d
 - 14 trials (not all high quality) → suggest 900 mg →↑culture conversion
 » Steingart et al., Int J Tuberc Lung Dis 2011;15:305-16
Alternate therapy

- Intolerance – switch rifamycins
- Check RBT sensitivity
- HEFZ$_2$ – 12-18 mo
- HEZ – 18 mo
- HSZ – 9 mo
- FLQ do not replace rifamycins
Case

1/16: 82 y. o. Indian ♀ DM dyspnea cough
 - CXR: mass, hilar adenopathy
 - PET/CT, bronchoscopy, EBUS TBNA
 - No CA;

4/16: chest pain, “URI” sx
 - CT chest, abd, pelvis, mass cavitated
 - 3 different hospital evaluation

10/17: hip fracture: cavitary mass larger

11/17: QFT positive
Case

- 11/21 admitted: ↑T, ↑RR, Δ MS, AKI
- GeneXpert: MDRTB
 - PZA, EMB, LIN, AMK, LFX
 - ARF: AMK stopped, PTL 85K, Hb 9 →?LIN
 - Consider adding BDQ; SM added without side-effect
- WGS: rpoB mutation: Leu533Pro
 - Sensitive to RBT (despite DST)
 - INH (katG mutation) = complete resistance
- DST resistant to SM
Case outcome

- Renal function returned to normal
 - AMK for SM
- Platelets stabilized on less LIN
- RBT added
- Sx gone, sput clear, cavity less
- Little recovery of CNS, cardiac status
Pyrazinamide
Pyrazinamide

- Most effect against dormant (persistors)
 - Prodrug: PZA → Pyrazinoic acid (POA)
 - POA enters cell: pH-dependent passive diffusion
 - Must be pumped out (energy-dependent)
 - More toxic to bacilli in low energy state

- Mutations: pncA (72-99%); RpsA (low resist)

- PZA-monoresistant → worse outcome
 » Yee et al., Int J Tuberc Lung Dis 2012;16:604-9

- Rx 9 mo HR
Quinolones
Quinolones

• LFX, MFX, GFX (removed from market)
 – CFX no role
• Mutations: gyrA, gyrB
• Best role: replace isoniazid, not RMP
• Side effects
 – LFX 750 mg (tendon, joint)
 – MFX 400 mg (arrhythmias)
 – All prolong QT
<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>Levofloxacin Group (n = 78)</th>
<th>Moxifloxacin Group (n = 77)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal trouble</td>
<td>30 (38.5%)</td>
<td>29 (37.7%)</td>
<td>0.92*</td>
</tr>
<tr>
<td>Musculoskeletal abnormalities</td>
<td>28 (35.9%)</td>
<td>11 (14.3%)</td>
<td>0.002*</td>
</tr>
<tr>
<td>Neurologic abnormalities</td>
<td>8 (10.3%)</td>
<td>11 (14.3%)</td>
<td>0.44*</td>
</tr>
<tr>
<td>Dermatologic abnormalities</td>
<td>9 (11.5%)</td>
<td>7 (9.1%)</td>
<td>0.62*</td>
</tr>
<tr>
<td>Others†</td>
<td>7 (8.9%)</td>
<td>9 (11.7%)</td>
<td>0.58*</td>
</tr>
<tr>
<td>Hepatotoxicity</td>
<td>8 (10.3%)</td>
<td>7 (9.1%)</td>
<td>0.81*</td>
</tr>
<tr>
<td>Ototoxicity</td>
<td>5 (6.4%)</td>
<td>4 (5.2%)</td>
<td>1.00‡</td>
</tr>
<tr>
<td>Allergic reaction</td>
<td>1 (1.3%)</td>
<td>6 (7.8%)</td>
<td>0.06‡</td>
</tr>
<tr>
<td>Cardiovascular abnormalities</td>
<td>3 (3.8%)</td>
<td>2 (2.6%)</td>
<td>1.00‡</td>
</tr>
<tr>
<td>Eye toxicity</td>
<td>1 (1.3%)</td>
<td>2 (2.6%)</td>
<td>0.62‡</td>
</tr>
<tr>
<td>Endocrinologic abnormalities</td>
<td>0</td>
<td>1 (1.3%)</td>
<td>0.50‡</td>
</tr>
<tr>
<td>Hematologic abnormalities</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Any adverse drug reactions</td>
<td>54 (69.2%)</td>
<td>46 (59.7%)</td>
<td>0.22‡</td>
</tr>
</tbody>
</table>

* P value from chi-square test.
† Others include general weakness, fatigue, sweating, and chills.
‡ P value from Fisher's exact test.
§ QT prolongation was not reported in both groups.

Grade 3 or 4 toxicity 7.7% 5.2% NS

Koh et al., Am J Respir Crit Care Med 2013;188:858-64
Linezolid
Linezolid

- Oxazolidinones − X tRNA
- Side effects in 59% (prolonged therapy)
 - 68% of these - major
 - Anemia 38%, neuropathy 47%, GI 17%; optic neuritis 13%, ↓ platelets 12%
 - Proportional to duration
 - More if dose > 600 mg/d
 - Sotgiu et al., Eur Resp J 2012;40:1430-42
- New oxazolidinones: sutezolid, posizolid, torezolid, radezolid
Bedaquiline

- Diarylquinoline − X ATPase synthesis
- No cross resistance
- EBA (400 mg) ≈ INH & RMP after 5 days
- ↓ Conversion time, rate, & cure
 - Diacon et al., N Engl J Med 214;371:723-32
- XDR: with KAN, OFX, EIO, PZA, CYC
- Monitor liver, ECG
- $6000 per month
IGRA Sources of variability

• Around cut point
 - 0.25-0.34 → 26% of conversions
 - 0.35-0.80 → 18% of reversions

• Preincubation delay
 - 6 h → 50%; 12 h → 67% reversions

• Blood volume (for QFT)
 - For each 0.2 mL ↑ volume → ↓ 0.11 IU

• Other: lots, shaking, labs, storage temp
 » Tagmouti et al. Annals ATS 2014 (in press)
GeneXpert

- Automated DNA probe for rpoB gene
- Point of care, low resource setting
- Better than smear
- Detect RFM resistance
- Sputum, other sites
New diagnostics

Smear misses $\frac{1}{2}$ of TB cases
Quantiferon Gold Plus®

• 4 tubes
 – Nil
 – Mitogen
 – CD4 (ESAT-6, CFP-10, long peptides)
 • Stimulates CD4 lymphocytes
 – CD8 (short peptides antigens)
 • Stimulates CD4 and CD8 lymphocytes
 • CD8 lymphocytes \propto active disease
Quantiferon Plus® results

- **QFT-Plus Positive**
 - *M. tuberculosis* infection is likely
 - Nil ≤ 8.0; and
 - TB1 and/or TB2 minus Nil ≥ 0.35 and ≥ 25% of Nil

- **QFT-Plus Negative**
 - *M. tuberculosis* infection is NOT likely
 - Nil ≤ 8.0, Mitogen minus Nil ≥ 0.5; and
 - TB1 and TB2 minus Nil < 0.35 or ≥ 0.35 and < 25% of Nil

- **QFT-Plus Indeterminate**
 - Likelihood of *M. tuberculosis* infection cannot be determined
 - Nil > 8.0
 - Nil ≤ 8.0 and TB1 and TB2 < 0.35 or ≥ 0.35 and < 25% of Nil and Mitogen minus Nil < 0.5
Diagnostic innovations

- Alere’s lipoarabinomannan (LAM) test
 - POC urine dipstick
 - Detects active TB
 - ↑ yield with ↓ CD4
 » Peter et al., Lancet 2016; 19:1187-97

- GeneXpert Omni (battery)

- GeneXpert Ultra
 - More sens (post-PCR melt curve analysis)
 - Approaches liquid media
 - Less specific
 » http://apps.who.int/iris/handle/10665/254792
New GeneXpert

- 25 mutations in 6 genes and promoter regions account for most FLX, INH, amino resistance
- Combined in GeneXpert cartridge
- Sensitivity 92.7-98.1
- Specificity 99.6%
- Expected out in end of 2019

» Xie et al., N Engl J Med 2017;377:1043-54
Thank you.
Stop TB

Anti TB Walk Campaign
4km / Saturday 23 March 2013

Registration: 1. St. Paul Hospital 2. St. Peter’s TB Specialized Hospital
3. Ministry of Health Public Relations Division

0912010686
0111230794